×

视觉ADAS功能、硬件需求、评价标准资料下载

消耗积分:3 | 格式:pdf | 大小:189.52KB | 2021-04-18

分享资料个

摄像头是ADAS核心传感器,相比毫米波雷达和激光雷达,最大优势在于识别(物体是车还是人、标志牌是什么颜色)。汽车行业价格敏感,摄像头硬件成本相对低廉,因为近几年计算机视觉发展迅速,从摄像头角度切入ADAS感知的创业公司数量也非常可观。 这些创业公司可以统称为视觉方案提供商。他们掌握核心的视觉传感器算法,向下游客户提供车载摄像头模组,芯片以及软件算法在内的整套方案。前装模式下,视觉方案提供商扮演二级供应商的角色,与Tier1配合为OEM定义产品。后装模式里,除了提供整套设备,也存在售卖算法的模式。本文中将对视觉ADAS功能、硬件需求、评价标准等进行解析,在《【车云报告】adas视觉方案入门盘点(下篇)》内容中将参考Mobileye对国内11家供应商的产品进行详细解读。 视觉ADAS供应链体系 一、视觉ADAS可实现功能 因为安全记录、停车等需要,摄像头在车上的大量应用是行车记录仪、倒车影像等辅助功能。一般通过安装在车身各个位置的广角摄像头采集影像,经过标定和算法处理,生成影像或拼接形成视图补充驾驶员视觉盲区,不用涉及整车控制,因此更加注重视频处理,技术已经成熟并逐渐普及。 目前在行车辅助功能中,摄像头可用来单独实现很多功能,并且按照自动驾驶发展规律逐渐演进。 这些功能更加强调对输入图像的处理,从拍摄的视频流中提取有效目标运动信息做进一步分析,给出预警信息或直接调动控制机构。相比视频输出类功能,强调高速下的实时性,这部分技术正处在发展上升期。 二、视觉ADAS软硬需求 视觉系ADAS产品由软硬件组成,主要包括摄像头模组、核心算法芯片以及软件算法。硬件方面考虑行车环境(震动、高低温等),大前提是要符合车规级要求。 (一)车载ADAS摄像头模组 车载ADAS摄像头模组需要定制化开发。为了适应车辆全天候全天时的需要,一般要满足在明暗反差过大的场合(进出隧道),很好平衡图像中过亮或太暗部分(宽动态);对光线比较灵敏(高感光),避免给芯片带来太大压力(并不是一昧追逐高像素)。 摄像头模组是基础。好比一张底子不错的照片才有修饰美化的余地,保证拍摄图像够用的基础上,算法才能更好地发挥效力。 另外在参数上,ADAS与行车记录仪对摄像头的需求不同。用于行车记录仪的摄像头需要看清车头周围尽可能多的环境信息(后视镜位置看向两个前轮,水平视角约要110度)。ADAS的摄像头更讲究为行车时预留更多判断时间,需要看得更远。类似相机镜头广角和长焦,两项参数不能兼得,ADAS在硬件选取时只能取其平衡。 (二)核心算法芯片 图像相关算法对计算资源有很高的要求,因此芯片性能讲究。如果在算法上叠加深度学习来帮助识别率提升,对硬件性能的要求只增不减,主要考虑的性能指标是运算速度、功耗、以及成本。 目前用于ADAS摄像头的芯片多数被国外垄断,主要供应商有瑞萨电子(Renesas Electronics)、意法半导体(ST)、飞思卡尔(Free scale)、亚德诺(ADI)、德州仪器(TI)、恩智浦(NXP)、富士通(Fujitsu)、赛灵思(Xilinx)、英伟达(NVIDIA)等,提供包括ARM、DSP、ASIC、MCU、SOC、FPGA、GPU等芯片方案 。 ARM、DSP、ASIC、MCU、SOC是软件编程的嵌入式方案,FPGA因为对硬件直接编程,和嵌入式相比处理速度更快。 GPU 和FPGA并行处理能力强。图片这样的文本,尤其在使用深度学习算法需要多个像素点同时计算,FPGA和GPU会更有优势。两类芯片的设计思路类似,都是为了处理大量简单重复的运算。GPU的性能更强但耗能也更高,FPGA因为编程和优化都是直接在硬件层面进行的,能耗会低很多。 因此在平衡算法和处理速度,尤其是用于前装并且算法稳定时,FPGA被视为一个热门方案。FPGA是个好选择。但同时,FPGA对技术要求也很高。原因在于计算机视觉算法是C语言,FPGA硬件语言是verilog,两种语言不同,将算法移植到FPGA的人既要有软件背景,又要有硬件背景。在人才最贵的今天,是笔不小的成本。 现阶段可用于传统计算机视觉算法的车规级芯片有多种选择,但是适用于传统算法叠加深度学习算法的低功耗高性能芯片,还没有真正出现。 (三)算法 ADAS视觉算法的源头是计算机视觉。 传统的计算机视觉识别物体大致可以分为图像输入、预处理、特征提取、特征分类、匹配、完成识别几个步骤。 有两处尤其依赖专业经验:第一是特征提取。在识别障碍时可用特征很多,特征设计尤其关键。判断前方障碍物是不是车,参考特征可能是车尾灯,也可能车辆底盘投在地面的阴影等。第二是预处理和后处理,预处理包括对输入图像噪声的平滑、对比度的增强和边缘检测等。后处理是指对分类识别结果候选进行再处理。 科研中的计算机视觉算法模型运用到实际环境中,不一定就能表现得很好。因为科研得出的算法会增加诸如天气、道路复杂情况在内的条件限制,现实世界里除了关注复杂环境的算法表现,还要考虑各种环境下算法的鲁棒性(是否稳定)。 算法上比较重要的一个变化是深度学习的渗透。 深度学习让计算机模拟人类思考的神经网络,可以自己学习判断。通过直接向计算机输入标定后的原始数据,比如挑选一堆异形车图片,然后丢给计算机让它自己学习什么是一辆车。这样就可以免去计算视觉特征提取、预处理等步骤,感知过程可以简化为输入图片-输出结果两步。 业内比较一致的观点认为,在感知方面,深度学习将会弯道超车传统视觉算法。目前深度学习的算法模型已经开源,而且算法种类不多,因此有降低门槛大量优秀结果涌现的可能。但是受限于没有合适的车端平台,离产品化还有一段距离。 业内对深度学习在ADAS应用的看法都比较客观冷静。不少观点认为深度学习算法是一个黑箱(Blackbox)算法,类似人感性决策的过程,可以很快输出一个结果,很难在发生事故后反查原因,因此在使用深度学习时要加入理性决策部分,并且分区块设计。 (mbbeetchina)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="//m.obk20.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'视觉ADAS功能、硬件需求、评价标准资料下载',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"https://www.elecfans.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);