环视鱼眼图像具有目标形变大和图像失真的缺点,导致传统网络结构在对鱼眼图像进行目标检测时效果不佳。为解决环视鱼眼图像中由于目标几何畸变而导致的目标检测难度大的问题,提出一种基于可变形卷积网络的鱼眼图像目标检测方法。将 Cascade rann中固定的卷积层和池化层分别替换为可变形卷积层和可变形池化层,使用 Resnet50网络提取候选区域以获得检测框,级联具有不同IoU阈值的检测网络进行检测框抑制。在公开鱼眼图像数据集 SFU VOC_360和本文所采集的真实道路场景鱼眼图像数据集上进行实验,结果表明,该方法在鱼眼图像目标检测中具有有效性,目标检测准确率高于 Cascade RANN网络。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !