多目标优化算法在复杂网络社区发现中具有很强的竞争力,然而,在处理社区结构较为模糊、网络数据规模大的问题时难以得到满意的效果。为克服现有多目标方法的不足,提岀一种基于谱聚类的多目标复杂网络社区发现算法。该算法先用谱聚类对编码后的复杂网络进行初始种群划分,利用子图聚类特性生成高质量的初始种群。采用一种网格约简的数据归减方法在进化过程中对种群进行约减,有效降低算法复杂度,以满足大规模网络社区发现需求。在仿真网络和9个真实网络上的实验结果表明,该算法在社区发现精度性能和计算复杂度方面,都要优于 MRMOEA, RMOEA, MCMOEA3种代表性的基于多目标的社区发现算法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !