马尔可夫聚类算法(MCL)是在大规模生物网络中寻找模块的一个有效方法,能够挖掘网络结构和功能影响力较大的模块。算法涉及到大规模矩阵计算,因此复杂度可达立方阶次。针对复杂度高的问题,提出了基于消息传递接口(MPI)的并行化马尔可夫聚类算法以提高算法的计算性能。首先,生物网络转化成邻接矩阵;然后,根据算法的特性,按照矩阵的规模判断并重新生成新矩阵以处理非平方倍数矩阵的计算;其次,并行计算通过按块分配的方式能够有效地实现任意规模矩阵的运算;最后,循环并行计算直至收敛,得到网络聚类结果。通过模拟网络和真实生物网络数据集的实验结果表明,与全块集体式通信(FCC)并行方法相比,平均并行效率提升了10个百分点以上,因此可以将该优化算法应用在不同类型的大规模生物网络中。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !