×

PyTorch教程4.2之图像分类数据集

消耗积分:0 | 格式:pdf | 大小:0.22 MB | 2023-06-05

敷衍作笑谈

分享资料个

广泛用于图像分类的数据集之一是手写数字的MNIST 数据集 LeCun等人,1998 年) 。在 1990 年代发布时,它对大多数机器学习算法提出了巨大挑战,其中包含 60,000 张图像 28×28像素分辨率(加上 10,000 张图像的测试数据集)。客观地说,在 1995 年,配备高达 64MB RAM 和惊人的 5 MFLOPs 的 Sun SPARCStation 5 被认为是 AT&T 贝尔实验室最先进的机器学习设备。实现数字识别的高精度是一个1990 年代 USPS 自动分拣信件的关键组件。深度网络,如 LeNet-5 LeCun等人,1995 年、具有不变性的支持向量机 Schölkopf等人,1996 年和切线距离分类器 Simard等人,1998 年都允许达到 1% 以下的错误率。

十多年来,MNIST 一直是比较机器学习算法的参考点虽然它作为基准数据集运行良好,但即使是按照当今标准的简单模型也能达到 95% 以上的分类准确率,这使得它不适合区分强模型和弱模型。更重要的是,数据集允许非常高的准确性,这在许多分类问题中通常是看不到的。这种算法的发展偏向于可以利用干净数据集的特定算法系列,例如活动集方法和边界搜索活动集算法。今天,MNIST 更像是一种健全性检查,而不是基准。ImageNet ( Deng et al. , 2009 )提出了一个更相关的挑战。不幸的是,对于本书中的许多示例和插图来说,ImageNet 太大了,因为训练这些示例需要很长时间才能使示例具有交互性。作为替代,我们将在接下来的部分中重点讨论定性相似但规模小得多的 Fashion-MNIST 数据集Xiao等人,2017 年,该数据集于 2017 年发布。它包含 10 类服装的图像 28×28像素分辨率。

%matplotlib inline
import time
import torch
import torchvision
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()
%matplotlib inline
import time
from mxnet import gluon, npx
from mxnet.gluon.data.vision import transforms
from d2l import mxnet as d2l

npx.set_np()

d2l.use_svg_display()
%matplotlib inline
import time
import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from jax import numpy as jnp
from d2l import jax as d2l

d2l.use_svg_display()
No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
%matplotlib inline
import time
import tensorflow as tf
from d2l import tensorflow as d2l

d2l.use_svg_display()

4.2.1. 加载数据集

由于它是一个经常使用的数据集,所有主要框架都提供了它的预处理版本。我们可以使用内置的框架实用程序将 Fashion-MNIST 数据集下载并读取到内存中。

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = torchvision.datasets.FashionMNIST(
      root=self.root, train=True, transform=trans, download=True)
    self.val = torchvision.datasets.FashionMNIST(
      root=self.root, train=False, transform=trans, download=True)
class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = gluon.data.vision.FashionMNIST(
      train=True).transform_first(trans)
    self.val = gluon.data.vision.FashionMNIST(
      train=False).transform_first(trans)
class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()
class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()

Fashion-MNIST 包含来自 10 个类别的图像,每个类别在训练数据集中由 6,000 个图像表示,在测试数据集中由 1,000 个图像表示。测试 数据集用于评估模型性能(不得用于训练)。因此,训练集和测试集分别包含 60,000 和 10,000 张图像。

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)
(60000, 10000)
data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)
(60000, 10000)
data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])
(60000, 10000)
data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])
(60000, 10000)

图像是灰度和放大到32×32分辨率以上的像素。这类似于由(二进制)黑白图像组成的原始 MNIST 数据集。但请注意,大多数具有 3 个通道(红色、绿色、蓝色)的现代图像数据和超过 100 个通道的高光谱图像(HyMap 传感器有 126 个通道)。按照惯例,我们将图像存储为 c×h×w张量,其中c是颜色通道数,h是高度和w是宽度。

data.train[0][0].shape
torch.Size([1, 32, 32])
data.train[0][0].shape
(1, 32, 32)
data.train[0][0].shape
(28, 28)
data.train[0

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="//m.obk20.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'PyTorch教程4.2之图像分类数据集',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"//www.obk20.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);