×

PyTorch教程4.4之从头开始实现Softmax回归

消耗积分:0 | 格式:pdf | 大小:0.36 MB | 2023-06-05

符筹荣

分享资料个

因为 softmax 回归是如此基础,我们相信您应该知道如何自己实现它。在这里,我们限制自己定义模型的 softmax 特定方面,并重用线性回归部分的其他组件,包括训练循环。

import torch
from d2l import torch as d2l
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()
from functools import partial
import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
import tensorflow as tf
from d2l import tensorflow as d2l

4.4.1. Softmax

让我们从最重要的部分开始:从标量到概率的映射。作为复习,请回忆一下在张量中沿特定维度的求和运算符,如第 2.3.6 节第 2.3.7 节中所讨论的。给定一个矩阵,X我们可以对所有元素(默认情况下)或仅对同一轴上的元素求和。axis变量让我们计算行和列的总和:

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)
(tensor([[5., 7., 9.]]),
 tensor([[ 6.],
     [15.]]))
X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)
(array([[5., 7., 9.]]),
 array([[ 6.],
    [15.]]))
X = jnp.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)
(Array([[5., 7., 9.]], dtype=float32),
 Array([[ 6.],
    [15.]], dtype=float32))
X = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
tf.reduce_sum(X, 0, keepdims=True), tf.reduce_sum(X, 1, keepdims=True)
(<tf.Tensor: shape=(1, 3), dtype=float32, numpy=array([[5., 7., 9.]], dtype=float32)>,
 <tf.Tensor: shape=(2, 1), dtype=float32, numpy=
 array([[ 6.],
    [15.]], dtype=float32)>)

计算 softmax 需要三个步骤:(i)每一项取幂;(ii) 对每一行求和以计算每个示例的归一化常数;(iii) 将每一行除以其归一化常数,确保结果之和为 1。

(4.4.1)softmax(X)ij=exp⁡(Xij)∑kexp⁡(Xik).

分母的(对数)称为(对数)配分函数它是在统计物理学中引入的 ,用于对热力学系综中的所有可能状态求和。实现很简单:

def softmax(X):
  X_exp = torch.exp(X)
  partition = X_exp.sum(1, keepdims=True)
  return X_exp / partition # The broadcasting mechanism is applied here
def softmax(X):
  X_exp = np.exp(X)
  partition = X_exp.sum(1, keepdims=True)
  return X_exp / partition # The broadcasting mechanism is applied here
def softmax(X):
  X_exp = jnp.exp(X)
  partition = X_exp.sum(1, keepdims=True)
  return X_exp / partition # The broadcasting mechanism is applied here
def softmax(X):
  X_exp = tf.exp(X)
  partition = tf.reduce_sum(X_exp, 1, keepdims=True)
  return X_exp / partition # The broadcasting mechanism is applied here

对于任何输入X,我们将每个元素变成一个非负数。每行总和为 1,这是概率所要求的。注意:上面的代码对于非常大或非常小的参数并不稳健。虽然这足以说明正在发生的事情,但您不应 将此代码逐字用于任何严肃的目的。深度学习框架内置了这样的保护,我们将在未来使用内置的 softmax。

X = torch.rand((2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
(tensor([[0.1560, 0.2128, 0.2260, 0.2372, 0.1680],
     [0.1504, 0.2473, 0.1132, 0.2779, 0.2112]]),
 tensor([1.0000, 1.0000]))
X = np.random.rand(2, 5)
X_prob = softmax(X)
X_prob, X_prob.sum(1)
(array([[0.17777154, 0.1857739 , 0.20995119, 0.23887765, 0.18762572],
    [0.24042214, 0.1757977 , 0.23786479, 0.15572716, 0.19018826]]),
 array([1., 1.]))
X = jax.random.uniform(jax.random.PRNGKey(d2l.get_seed()), (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)
(Array([[0.17380024, 0.13607854, 0.29826194, 0.18967763, 0.20218161],
    [0.24212085, 0.19360834, 0.21299706, 0.17635451, 0.17491929]],   dtype=float32),
 Array([1., 1.], dtype=float32))
X = tf.random.uniform((2, 5))
X_prob = softmax(X)
X_prob, tf.reduce_sum(X_prob, 1)
(<tf.Tensor: shape=(2, 5), dtype=float32, numpy=
 array([[0.20415688, 0.19163935, 0.25970557, 0.17480859, 0.16968955],
    [0.27490872, 0.21236995, 0.12360045, 0.12381317, 0.2653077 ]],
    dtype=float32)>,
 <tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)>)
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="//m.obk20.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'PyTorch教程4.4之从头开始实现Softmax回归',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"//www.obk20.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);