针对复杂环境下机器人的同时定位与地图构建( SLAM)存在实时性与鲁棒性下降等问题,将一种基于ORB特征点的关键帧闭环检测匹配算法应用到定位与地图构建巾。研究并分析了特征点提取与描述符建立、帧间配准、位姿变换估计以及闭环检测对SLAM系统的影响,建立了关键帧闭环匹配算法和SLAM实时性与鲁棒性之间的关系,提出了一种基于ORB关键帧匹配算法的SLAM方法。运用改进ORB算法加快了图像特征点提取与描述符建立速度;结合相机模型与深度信息,可将二维特征图像转换为三维彩色点云;通过随机采样一致性( RANSAC)与最近迭代点(ICP)相结合的改进RANSAC-ICP算法,实现了机器人在初始配准不确定条件下的位姿估计;使用KeyFrame的词袋闭环检测算法,减少了地图的冗余结构,生成了具有一致性的地图;通过特征点匹配速度与绝对轨迹误差的均方根值对SLAM系统的实时性与鲁棒性进行了评价。基于标准测试集数据集的实验结果表明,ORB关键帧匹配算法能够有效提高SLAM系统建图速度与稳定性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !