(图二)
RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
在上图二中 左半部分灰色的点为观测数据,一个可以解释或者适应于观测数据的参数化模型 我们可以在这个图定义为一条直线,如y=kx + b;
一些可信的参数指的就是指定的局内点范围。而k,和b就是我们需要用RANSAC算法求出来的
RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:
1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
5.最后,通过估计局内点与模型的错误率来评估模型。
这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。
这个算法用图二的例子说明就是先随机找到内点,计算k1和b1,再用这个模型算其他内点是不是也满足y=k1x+b2,评估模型
再跟后面的两个随机的内点算出来的k2和b2比较模型评估值,不停迭代最后找到最优点
我再用图一的模型说明一下RANSAC算法
(图1)
RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。
模型对应的是空间中一个点云数据到另外一个点云数据的旋转以及平移。
第一步随机得到的是一个点云中的点对作 ,利用其不变特征(两点距离,两点法向量夹角)作为哈希表的索引值搜索另一个点云中的一对对应点对,然后计算得到旋转及平移的参数值。
然后适用变换,找到其他局内点,并在找到局内点之后重新计算旋转及平移为下一个状态。
然后迭代上述过程,找到最终的位置
其中观测数据就是PB,一个可以解释或者适应于观测数据的参数化模型是 四元数
旋转,并平移
可信的参数是两个点对的不变特征(两点距离,两点法向量夹角)
也就是说用RANSAC算法是 从PB找一个随机的点对计算不变特征,找目标点云PR里特征最像的来匹配,计算qR和qT
RANSAC算法成立的条件里主要是先要有一个模型和确定的特征,用确定的特征计算模型的具体参数
RANSAC算法貌似可以应用很多地方,这个相比ICP算法,更接近于一种算法思想吧