功耗的三个主要来源是启动、待机和动态功耗。器件上电时产生的相关电流即是启动电流;待机功耗又称作静态功耗,是电源开启但I/O上没有开关活动时器件的功耗;动态功耗是指器件正常工作时的功耗。
启动电流因器件而异。例如,基于SRAM的FPGA具有高启动电流,因为这类器件刚上电时是没有配置的,而需要从外部存储芯片下载数据来配置它们的可编程资源,如路由连接和查找表。相反地,反熔丝FPGA不需要上电配置,因而没有高启动电流。
像启动电流一样,待机功耗主要依赖于器件的电子特性。由于SRAMFPGA互连中SRAM单元的数量相当大,它们甚至在待机时也要消耗数百毫安电流。反熔丝FPGA具有金属到金属互连,不需要额外的晶体管来保持互连,因而也就不会产生额外的功耗。但是,对上述两种FPGA类型来说,漏电流将随工艺几何尺寸的缩小而增加,这加剧了功耗问题。
另一个难题是动态功耗,其动辄比待机功耗大好几倍。动态功耗与FPGA内部单元(如寄存器和组合逻辑)寄生电容的充电和放电频率成比例,因而通常要针对设计进行优化。
下面将介绍FPGA设计中常用的一些可以降低功耗的技术:
功耗的三个主要来源是启动、待机和动态功耗。器件上电时产生的相关电流即是启动电流;待机功耗又称作静态功耗,是电源开启但I/O上没有开关活动时器件的功耗;动态功耗是指器件正常工作时的功耗。
启动电流因器件而异。例如,基于SRAM的FPGA具有高启动电流,因为这类器件刚上电时是没有配置的,而需要从外部存储芯片下载数据来配置它们的可编程资源,如路由连接和查找表。相反地,反熔丝FPGA不需要上电配置,因而没有高启动电流。
像启动电流一样,待机功耗主要依赖于器件的电子特性。由于SRAMFPGA互连中SRAM单元的数量相当大,它们甚至在待机时也要消耗数百毫安电流。反熔丝FPGA具有金属到金属互连,不需要额外的晶体管来保持互连,因而也就不会产生额外的功耗。但是,对上述两种FPGA类型来说,漏电流将随工艺几何尺寸的缩小而增加,这加剧了功耗问题。
另一个难题是动态功耗,其动辄比待机功耗大好几倍。动态功耗与FPGA内部单元(如寄存器和组合逻辑)寄生电容的充电和放电频率成比例,因而通常要针对设计进行优化。
下面将介绍FPGA设计中常用的一些可以降低功耗的技术:
举报