电力电子技术
直播中

李海必

7年用户 176经验值
私信 关注
[问答]

高速模数转换器的转换误码率分析

高速模数转换器的转换误码率解密

回帖(8)

杨梦月

2020-12-22 14:28:51
就像很多其他半导体器件一样,高速模数转换器(ADC)并 不能始终像我们期望那样完美运行。它们存在一些固有限 制,使其偶尔会产生超出正常功能的罕见转换错误。然 而,像测试和测量设备等很多实际采样系统不容许存在高 ADC转换误码率。因此,量化高速模数转换误码率(CER) 的频率和幅度非常重要,这样工程师才能设计出具有合适 预期性能的系统。
高速或GSPS ADC(每秒千兆采样ADC)相对稀疏出现的转换 错误不仅造成其难以检测,而且还使测量过程非常耗时。 该持续时间通常超出毫秒范围,达到几小时、几天、几周 甚至是几个月。为了帮助消减这一耗时测试负担,我们可 以在一定“置信度”的确定性情况下估算误码率,而仍然保 持结果的质量。
举报

曲芳

2020-12-22 14:29:03
比特误码率(BER)与转换误码率(CER)

与串行或并行数字数据传输中比特误码率的数字等效值类 似,转换误码率是转换错误数与样本总数之比。但是, BER和CER之间有一些截然不同之处。数字数据流中的 BER测试采用长伪随机序列,该序列可于发送器中在传输 两端使用常用种子值来启动。接收器预期将收到理想的传 输。通过观察接收数据与理想数据的差异,便可精确计算 出BER。两端之间伪随机序列数据中的失配(基于种子值) 即视为比特错误。
与CER不同,误差测定不像纯数字比较那么简单。由于 ADC转换过程中始终具有小的非线性,另外还存在系统噪 声和抖动,因此并非总是能确定预期数据和实际数据之间 的确切差异。相反,需要建立误差阈值,用于确定转换错 误和具有容许预期噪声的样本之间的界限。这与数字BER 不同,并不会对发送和接收的预期数据进行确切比较。相 反,首先必须量化样本的误差幅度,然后再确定是转换错 误,还是在转换器和系统的预期非线性范围内。
ADC后端数字接口的误码率必须低于转换器的内核CER, 因此无法忽视。如果并非如此,那么数据输出传输误差将 覆盖CER并成为主要误差来源。系统设计人员实际并不关 心误差来自ADC的哪一部分,但是,出于讨论目的,我们 将仅关注ADC转换误码率。
举报

宣苗

2020-12-22 14:29:41
亚稳态

高速ADC中造成转换错误的一个常见原因是一种称为亚稳 态的现象。高速ADC在将模拟信号转换为数字值的不同转 换级中往往会使用很多梯形比较器。如果比较器无法确定 模拟输入是高于还是低于其参考点时,就会产生可能导致 出现错误代码的亚稳态结果。当两个比较器的输入之差幅 度非常小或为零时,就可能发生这种情况,此时无法进行 正确比较。由于此错误值会沿着流水线传播,因此ADC可 能产生重大的转换错误。







图1. 此基本梯形比较器设计给出了比较器决定点的转换故障 概率性点(亚稳态)。假设AIN = VA,中间的比较器可能无法 在有限转换时间内分辨稳定的输出,导致位[1]和位[0]具有 多个可能的错误组合。
当差分模拟输入为相对较大的正值或负值时,比较器可以 快速计算出差值并给出明确决定。当差分值很小或为零 时,比较器做出决定所需的持续时间会长很多。如果在此 决定点之前比较器输出锁存,则将产生亚稳态结果。
幸运的是,有些设计方案可以减轻这个问题。首先,最显 而易见的方法是将比较器的不确定范围设计地非常小,迫 使比较器在可能的最大模拟输入条件范围内做出准确决 定。不过,这可能造成威廉希尔官方网站 功率和设计尺寸增加。
第二种方法是尽量延迟比较器采样时间,给模拟输入最长 的时间建立至已知的比较器输出值。不过,这种方法存在 多个限制,因为延迟最长也只能持续到当前采样时间结 束,而后比较器必须继续处理下一次采样。
第三种方法是采用智能错误检测和校正算法,该算法会对比 较器在高速ADC转换过程后续阶段中引入的不确定性进行 数字补偿。当比较器未能在最大允许时间内做出决定时,逻 辑可检测到该缺失。然后,此信息可被附加到相关样本上, 以便未来进行内部调整。识别出此警报时,可使用后处理步 骤在样本从转换器输出前纠正该错误。这可以从图2中的 AD9625看出,它是ADI公司的一款12位、2.5 GSPS ADC。






图2. 可在AD9625的模数转换过程内识别比较器的 不确定性。可在后续步骤中执行校正命令以校正 样本,然后再从转换器输出。
举报

蔡柱刚

2020-12-22 14:29:50
置信度

CER置信度(CL)是指在不精确到特定故障率的情况下对未 来错误的外推预期。这可减少针对给定CER获取的样本总 数,但代价是不能保证100%的确定性。从数学角度来说, 要达到绝对100%的确定性,需要取得无限持续时间内的样 本。因此,根据行业经验,95%的置信度已经相当接近已 知值并且实现了不确定性和测量时间之间的平衡。如果将 测试重复一百次,则有95次可以准确识误码率。
有时我们会误认为一旦在测试期间检测到错误,该过程就 会结束并找到最终的转换误码率。这既不准确也不完整。 无论过程中是否有错误,都可以测试转换误码率及相关置 信度。但是,如果在给定置信度下检测到错误,则与没有 错误时的样本数相比,必须增加测量的样本数量。此影响 如下图3所示。






图3. N*CER与置信度和错误检测计数的关系曲线。 注意,检测到错误后可以继续进行CER测试, 但是要实现相同的置信度,则需要增加测量 的样本数。
以下公式给出了置信度、误码率和样本数之间的自然对数 数学关系表达式:

N = 测量的样本数
CER = 转换误码率
CL = 置信度
E = 检测到的错误计数

未检测到错误时,公式有所简化,右边的项等于零,结果 仅取决于左边的项。当置信度为95%且未检测到错误时, 所需的样本数仅约为预期CER的倒数乘以3。精确到100% 置信度时,即对于任何CER值都有CL = 1.0,从数学角度上 需要获取–ln(0)无穷大的无限样本数(N)。
举报

更多回帖

发帖
×
20
完善资料,
赚取积分