雷击电压测试
从应用威廉希尔官方网站
的角度来看主动桥式整流器直接并联在桥式整流器之上,无可避免地,就必须面临雷击电压及冲击电流能力的问题,不同于功率晶体,一般的桥式整流器耐冲击电流能力极高,如DB25X60,在10ms内,其I2t可达350A2t;此外,一般的桥式整流器可以选用的电压规格至少可达1000V,因此,若有雷击问题发生时,可以采用较高电压及电流规格的桥式整流器,传统上桥式整流器的选用,对电源供应器的设计者而言,大多都不是太大的问题,然而当设计者选用了主动桥式整流器用于改善电源供应器的效率时,很多问题就必须被考虑进来。
当功率晶体的电压超过所能承受的崩溃电压后,功率晶体在单位时间必须能够承受得住足够的能量冲击,若在主动桥式整流器中采用IPT60R028G7,其电压规格为650V@TJ,max,其单脉波崩溃能量EAS为288mJ,,很明显地,在雷击测试中,如果系统没有使用能够有效传导及吸收雷击能量的组件,即使是在只有1kV的测试当中,在主动式桥式整流器上的功率晶体,也会因为过电压而毁坏。
如图12所示,常用的两种不同的bypass diode连接方式,图12(a)连接于π型滤波器之后,而图12(b)连接于π型滤波器之前,直接接在主动桥式整流器之上,其中π型滤波器经常被应用于CrM PFC连接于桥式整流器之后。
图12: Bypass Diode连接方式决定雷击能量传导
在使用主动桥式整流器后,原来的桥式整流器是否就能够不需要呢?这是一个使用主动桥式整流器的电源设计者常常会问到的问题。考虑桥式整流器的电流能力,是以I2t决定;而功率晶体的最大电流能力,取决于功率晶体的散热条件及最大接面温度,如图13所示。由图中可以知道桥式整流器的耐电流能力远高于功率晶体。
图13:桥式整流器(D25XB60)及功率晶体(IPT60R028G7)的电流能力
无论是桥式整流器或是主动桥式整流器而言,所必须面对的浪涌电流条件有几个:
(a)开机过程中,输入电压对输出电容的充电电流
(b)交流电压周期丢失(AC Cycle Dropout)后的重新浪涌电流(Surge Current)
(c)雷击过程中的过电压所产生的过电流
事实上,除了在开机过程中,因为有限流电阻的存在,所以冲击电流值较小,如果只单靠功率晶体而没有桥式整流器,功率晶体是很难抵挡得住上述的其他冲击电流。由图14的分流率计算结果可以得知,在没有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现两个具有负温度系数组件的并联,因功率晶体的顺向导通电压VSD小于桥式整流器的顺向导通电压VF,致使近90%的电流都会流经功率晶体。
图14:功率晶体截止下的本体二极管与桥式整流器(GBJ1506)的分流率
事实上,除了在开机过程中,因为有限流电阻的存在,所以冲击电流值较小,如果只单靠功率晶体而没有桥式整流器,功率晶体是很难抵挡得住上述的其他冲击电流。由图14的分流率计算结果可以得知,在没有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现两个具有负温度系数组件的并联,因功率晶体的顺向导通电压VSD小于桥式整流器的顺向导通电压VF,致使近90%的电流都会流经功率晶体。
图14:功率晶体截止下的本体二极管与桥式整流器(GBJ1506)的分流率
在有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现正温度系数的导通电阻与负温度系数的二极管并联,在桥式整流器的顺向导通电压VF大于电流与导通电阻的乘积时,大部份电流都会流过功率晶体;而在桥式整流器的顺向导通电压VF小于电流与导通电阻的乘积时,桥式整流器开始与功率晶体进行分流。
图15:桥式整流器与功率晶体的电流分流(a)概念图(b)波形图
在有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现正温度系数的导通电阻与负温度系数的二极管并联,在桥式整流器的顺向导通电压VF大于电流与导通电阻的乘积时,大部份电流都会流过功率晶体;而在桥式整流器的顺向导通电压VF小于电流与导通电阻的乘积时,桥式整流器开始与功率晶体进行分流。
图16:功率晶体截止下的本体二极管与桥式整流器(GBJ1506)的分流率
如图16所示,假设VF为1.3V,功率晶体温度75℃,桥式整流器温度为25℃时,功率晶体上的电流为32A,占总电流的42%;而在更高的总电流, Itotal=110A时,假设VF为1.5V,功率晶体温度125℃,桥式整流器温度为25℃时,功率晶体上的电流为30A占总电流的27%,由此计算可以得到桥式整流器在冲击电流下,确实能够有好的分流效果。
如图17,为1200W PFC威廉希尔官方网站
在AC 电源丢失回复时,总电流与桥式整流器电流的波形,可以发现在正常条件下,几乎没有电流流过桥式整流器;但在大电流情况下,桥式整流器会开始进行分流,避免因瞬间的大电流造成主动桥式整流器烧毁。
图17:桥式整流器在交流电压丢失回复时的电流分流
雷击电压测试
从应用威廉希尔官方网站
的角度来看主动桥式整流器直接并联在桥式整流器之上,无可避免地,就必须面临雷击电压及冲击电流能力的问题,不同于功率晶体,一般的桥式整流器耐冲击电流能力极高,如DB25X60,在10ms内,其I2t可达350A2t;此外,一般的桥式整流器可以选用的电压规格至少可达1000V,因此,若有雷击问题发生时,可以采用较高电压及电流规格的桥式整流器,传统上桥式整流器的选用,对电源供应器的设计者而言,大多都不是太大的问题,然而当设计者选用了主动桥式整流器用于改善电源供应器的效率时,很多问题就必须被考虑进来。
当功率晶体的电压超过所能承受的崩溃电压后,功率晶体在单位时间必须能够承受得住足够的能量冲击,若在主动桥式整流器中采用IPT60R028G7,其电压规格为650V@TJ,max,其单脉波崩溃能量EAS为288mJ,,很明显地,在雷击测试中,如果系统没有使用能够有效传导及吸收雷击能量的组件,即使是在只有1kV的测试当中,在主动式桥式整流器上的功率晶体,也会因为过电压而毁坏。
如图12所示,常用的两种不同的bypass diode连接方式,图12(a)连接于π型滤波器之后,而图12(b)连接于π型滤波器之前,直接接在主动桥式整流器之上,其中π型滤波器经常被应用于CrM PFC连接于桥式整流器之后。
图12: Bypass Diode连接方式决定雷击能量传导
在使用主动桥式整流器后,原来的桥式整流器是否就能够不需要呢?这是一个使用主动桥式整流器的电源设计者常常会问到的问题。考虑桥式整流器的电流能力,是以I2t决定;而功率晶体的最大电流能力,取决于功率晶体的散热条件及最大接面温度,如图13所示。由图中可以知道桥式整流器的耐电流能力远高于功率晶体。
图13:桥式整流器(D25XB60)及功率晶体(IPT60R028G7)的电流能力
无论是桥式整流器或是主动桥式整流器而言,所必须面对的浪涌电流条件有几个:
(a)开机过程中,输入电压对输出电容的充电电流
(b)交流电压周期丢失(AC Cycle Dropout)后的重新浪涌电流(Surge Current)
(c)雷击过程中的过电压所产生的过电流
事实上,除了在开机过程中,因为有限流电阻的存在,所以冲击电流值较小,如果只单靠功率晶体而没有桥式整流器,功率晶体是很难抵挡得住上述的其他冲击电流。由图14的分流率计算结果可以得知,在没有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现两个具有负温度系数组件的并联,因功率晶体的顺向导通电压VSD小于桥式整流器的顺向导通电压VF,致使近90%的电流都会流经功率晶体。
图14:功率晶体截止下的本体二极管与桥式整流器(GBJ1506)的分流率
事实上,除了在开机过程中,因为有限流电阻的存在,所以冲击电流值较小,如果只单靠功率晶体而没有桥式整流器,功率晶体是很难抵挡得住上述的其他冲击电流。由图14的分流率计算结果可以得知,在没有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现两个具有负温度系数组件的并联,因功率晶体的顺向导通电压VSD小于桥式整流器的顺向导通电压VF,致使近90%的电流都会流经功率晶体。
图14:功率晶体截止下的本体二极管与桥式整流器(GBJ1506)的分流率
在有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现正温度系数的导通电阻与负温度系数的二极管并联,在桥式整流器的顺向导通电压VF大于电流与导通电阻的乘积时,大部份电流都会流过功率晶体;而在桥式整流器的顺向导通电压VF小于电流与导通电阻的乘积时,桥式整流器开始与功率晶体进行分流。
图15:桥式整流器与功率晶体的电流分流(a)概念图(b)波形图
在有功率晶体驱动信号的条件之下,功率晶体与桥式整流器的并联,呈现正温度系数的导通电阻与负温度系数的二极管并联,在桥式整流器的顺向导通电压VF大于电流与导通电阻的乘积时,大部份电流都会流过功率晶体;而在桥式整流器的顺向导通电压VF小于电流与导通电阻的乘积时,桥式整流器开始与功率晶体进行分流。
图16:功率晶体截止下的本体二极管与桥式整流器(GBJ1506)的分流率
如图16所示,假设VF为1.3V,功率晶体温度75℃,桥式整流器温度为25℃时,功率晶体上的电流为32A,占总电流的42%;而在更高的总电流, Itotal=110A时,假设VF为1.5V,功率晶体温度125℃,桥式整流器温度为25℃时,功率晶体上的电流为30A占总电流的27%,由此计算可以得到桥式整流器在冲击电流下,确实能够有好的分流效果。
如图17,为1200W PFC威廉希尔官方网站
在AC 电源丢失回复时,总电流与桥式整流器电流的波形,可以发现在正常条件下,几乎没有电流流过桥式整流器;但在大电流情况下,桥式整流器会开始进行分流,避免因瞬间的大电流造成主动桥式整流器烧毁。
图17:桥式整流器在交流电压丢失回复时的电流分流
举报