图4自由空间偶极天线方向性图。在 A 图中,辐射图形平面包含了导线轴线,每个虚线箭头长度表示了在此方向上,与导线轴线成直角方向的最大辐射为参照的相对场强。在大约45°和315°的箭头为半功率或﹣3 dB 点。 B 图的网格线表示了同一天线的立体辐射图。这些同样的辐射图可以用于任何短于半波长度的中心馈电偶极天线。
E 面和 H 面方向图
自由空间中天线的三维立体方向图的场强数据并不能清楚地表示在平面白纸上。制图师们也面临过相似的问题,他们要把地球绘制在平坦的纸上。这时,横截面图表或平面图表就十分有用了。其中有两个平面上的图样可以表达出天线的方向图的大部分信息,一个是包含偶极天线的平面,另一个是与之相垂直的平面。包含天线轴(偶极天线的天线轴指的是偶极天线的导线走向)的平面的方向图称为 E 面方向图,与天线轴垂直的平面的方向图称为 H 面方向图。之所以使用这种表示称呼,是因为电场( E )和磁场( H )分别位于这两个平面上。
电场线代表着天线的极化方向。垂直极化天线是天线导体垂直于地面架设的天线。
当天线架设在地面上方而不是在自由空间时,我们将会自动得出两个参考框架﹣﹣方位角和仰角。方位角通常以天线的最大辐射处作为参照,并把此处定义为0°,也可以以地理正北作为方位角的参照。地面上方的天线的 E 面方向图现在被称为“方位角方向图”。
仰角是以地表水平面作为参照的。地表水平面为0°。虽然地球是圆的,但由于其曲率很大,所以在这里可以认为在天线下方的区域内它是平的。90°仰角的方向就是天线的正上方,180°仰角的方向就是线正后方的水平面。
专业的天线工程师经常以天线正上方的点作为参考﹣﹣也就是使用顶角而不用仰角。仰角可以由90°减去顶角得到。
以地球的水平面作参照,天线的 H 面方向图现在称为“仰角方向图”。不像自由空间的 H 面方向图,地面上方的天线的仰角方向图只有一个半圆范围,因为只有地表上方的正仰角范围是可用的。由于地面的反射,或者认为是负仰角的镜像辐射,地表以下的辐射无需考虑。
在小小的练习和一定的想象之后,这两个平面方向图的引入就可以在相当的准确度上把三维的方向图展现出来,在这里我们假定天线的三维方向图是“平滑”的,对于像半波偶极天线这样的简单天线来说,这样的条件是成立的。
正如前面说过的那样,平面方向图画在极坐标纸中。辐射为零的点称为零点。从一个零点到另一个零点的曲线,或其相对应的三维方向图中的曲面,称为波瓣。辐射最强的那一瓣称为“主瓣”。图4( A )显示了半波偶极天线的 E 面方面图。在图4中,偶极天线是放置在自由空间中的。方向图中除了主瓣和零点外,还标出了所谓的“半功率点”。这些点处的功率比主瓣的峰值点低3 dB 。
方向性与增益
现在让我们更深入地讨论方向性问题。如前所述,所有的实际中的天线,即使是最简单的天线,都会有一定程度的方向性。这里有另一幅图可以用来解释方向性的概念。图5( A )所示为吹成正常球体形状的气球。这表示一个“参考的”等方向性源。在图5( B )中,挤压气球中部,产生一个像8字形的偶极天线,它在顶部和底部的峰值比参考等方向性源的要大,将它与图5( C )相比较,下面,挤压气球的底端,产生一个辐射图,它的增益比参等方向性源的要大。
自由空间中的天线的方向性可以在数量上把它的三维方向图与各向同性天线比较。在假想的半径为数个波长的理想球体中心放置的各向同性天线,其场强(单位面积的能量,或称为“功率密度”)在假想球体的表面的每一点处都是一样的。而在这个相同的假想球体的表面,待测天线辐射出与各向同性天线相同的功率,其方向性导致在某些点处功率密度大些,而在另一些点处功率密度小些。最大功率密度与整个假想球体表面的平均功率密度(等于各向同性天线在相同条件下的功率密度)之比可以用来衡量天线的方向性。也就是:
图5用气球做天线辐射增益的演示。用一个气球,吹起来成为大概一个圆形,看作等方向性辐射体的辐射形状,接下来,再吹一个同样大小形状的气球,并告知听众把它当作参考天线( A )图,然后挤压第一个气球中间,形成一个8字形状,这就是一个偶极天线辐射形状,并将最大尺寸与参考天线作比较,( B )图。偶极天线可以看作相对于参考的等方向辐射体有一些“增益”。接下来,再将第一个气球尾部进行挤压,变成一个香肠的样子,这就演示了某类定向天线产生的辐射形状。
其中 D 称为“方向系数”, P 为假想球体表面最大功率密度, Pav为平均功率密度。天线的增益与天线的方向系数密切相关。因为天线的方向系数只由天线的方向图决定,它并不关心实际天线中的任何功率损失。在计算增益的时候,必须把这些损失从加在天线上的功率中减去。一般来说,这些功率损失占天线输入功率的一个固定的百分比,因此天线的增益为
其中 G 为天线的增益(以功率比表示), D 为方向系数, k 为天线效率(辐射功率除以输入功率), P 和 Pav如前面定义。对业余无线电用的很多天线来说,天线的效率是很高的(损耗部分只占总功率的百分之几)。这时,天线增益可近似地认为等于天线的方向系数。天线的方向图压缩得越厉害﹣﹣或者用通用的术语说,天线的波瓣越尖锐,天线的增益就越高。得出这个结论是很自然的,天线的辐射功率要在某个方向上比较大,其他方向上自然比较小,那么天线的波瓣就比较窄了。这样天线辐射出去的能量就集中在某些方向上,其他方向上能量就比较小。一般来说,在相同波瓣半径的三维方向图中,波瓣体积越小,功率增益越高。如前所述,天线的增益与方向系数有关,而方向系数又与方向图形状有关。天线方向图主瓣宽度是一个常用的衡量天线方向性的指标,这也是与天线增益相联系的。这个宽度以两个半功率点即﹣3 dB 点之间所夹的角度表示,常被称为“波束宽度”。这一信息只能给出天线相对增益的大体概念,而不是确切的测量。因为绝对数据的测量需要知道假想球体表面上每一个点的功率密度,而单个平面的方向图只能表示出球体中的一个大圆所在平面的情况。习惯上,在对几副天线进行对比之前,必须起码测量各自的 E 面和 H 面方向图。可以用下式来估算天线相对于各向同性天线的增益,但条件是天线的副瓣相对于主瓣较小,而且天线在电阻上的(热)损耗也较小。如果天线的方向图比较复杂,就需要用数值方法才能得出实际的增益了。
其中H3dB和 E3dB分别表示对应平面上的半功率瓣宽,单位为度。不同频率下中心馈电的偶极天线的方向图较早前,我们看到了中心馈电的偶极天线馈电点处的阻抗随频率变化的情况。这种天线的方向图又是怎样随频率改变的呢?总的来说,中心馈电天线的长度越长(以波长为单位),其方向图就分割越多的波瓣。所有这些方向图的一个共同特点是:主瓣﹣﹣在固定距离下强度最大的点所在的波瓣﹣﹣总是和天线成最小的角度。而且当天线长度增长时,这个角度减小。让我们看看用14号(#14)导线做成的100英尺长偶极天线的自由空间方向图是怎样随频率变化的(改变频率也就是改变固定长度天线的波长)。
图6显示了在4.8 MHz 半波谐振点处天线的 E 面方向图。这是偶极天线的典型方向图,其相对于各向同性天线的自由空间增益为2.14 dBi 。图6自由空间100英尺长度偶极天线,工作在4.80 MHz 半波谐振频率时的 E 平面辐射图。该天线增益为2.14 dBi ,偶极天线沿着90°~270°方向摆放。图7显示了相同天线在9.55 MHz 全波(2λ/2)谐振点处的 E 面方向图。请注意这个方向图被“夹紧”了。换句话说,在这个频率上,两个主瓣变得更尖锐了,增益变成了3.73 dBi ,比半波频率时高。
图7自由空间100英尺长度偶极天线,工作在9.55 MHz 全波谐振频率时的 E 平面辐射图。增益增加到3.73 dBi ,因为其主瓣相对图13的要集中和尖锐些。图8显示了相同天线在14.6 MHz (3λ/2)谐振点处的 E 面方向图。比起图2-14来说,这时出现了更多的波瓣。这意味着功率被分散到更多的波瓣中,因而天线的增益降低了一点,为3.44 dBi 。这仍比半波频率时的增益高,但比全波频率时的增益低。图9显示了相同天线在19.45 MHz 两倍波长(2λ)谐振点处的 E 面方向图。现在方向图又重新合并成只有4个波瓣了。而增益上升为3.96 dBi 。
图8自由空间100英尺长度偶极天线,工作在14.60MHz,3/2λ谐振频率时的 E 平面辐射图。辐射形状裂为6个波瓣,因此最大增益下降为3.44 dBi 。
图9自由空间100英尺长度偶极天线,工作在19.45MHz,两倍全波长谐振频率时的 E 平面辐射图。辐射形状裂为4个波瓣,最大增益为3.96 dBi 。图10自由空间100英尺长度偶极天线,工作在24.45 MHz ,5λ/2谐振频率时的 E 平面辐射图。辐射形状裂为10个波瓣,最大增益为4.78 dBi 。
图10中在24.45 MHz (5λ/2)谐振点处,情况又复杂起来了,一共有10个波瓣。虽然有很多副瓣,但增益为4.78 dBi 。最后,图11中在29.45MHz3倍波长(3λ)谐振点处,虽然波瓣数目少了,但增益又略为下降到4.70 dBi 。固定长度天线的方向图﹣﹣并由之而决定天线的增益﹣﹣随频率变化得相当显著。当然,如果把频率固定下来,而改变天线的长度,情况是一样的。在这两种情况下,波长都是在变化的。另外,还可以明显地看出在某些天线长度上天线增益得以增强。如果天线的方位角不变,当频率改变时,峰值增益处的位置也是要改变的。也就是说,主瓣的位置也会随频率的变化而变化。
图11自由空间100英尺长度偶极天线,工作在29.45 MHz ,三倍全波长谐振频率时的 E 平面辐射图。辐射形状又裂为4个波瓣,最大增益为4.70 dBi 。
原作者:BG4ICC 火腿天线