0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

IEEE发布半导体技术路线图,助力碳化硅和氮化镓材料发展

独爱72H 来源:智东西 作者:佚名 2020-04-13 16:01 次阅读

(文章来源:智东西)

近日,为了促进宽带隙(WBG)半导体技术的发展,IEEE电力电子学会(PELS)发布了宽带隙功率半导体(ITRW)的国际技术路线图。

该路线图确定了宽带隙技术发展的关键趋势、设计挑战、潜在应用领域和未来应用预测。

一、什么是宽带隙半导体?宽带隙半导体指的是在室温下带隙大于2.0eV的半导体材料,如碳化硅(SiC)和氮化镓(GaN)。这类材料的带隙(绝缘态和导电态之间的能量差)明显大于硅。因此,宽带隙功率设备消耗的能源更少,可以承受更高的电压,在更高的温度和频率下运行,并且能够从可再生能源中产生更可靠的电力形式。

从应用角度看,宽带隙半导体能够广泛应用于蓝、紫光和紫外光电子器件,以及高频、高温、高功率等电气器件中。但由于宽带隙技术较新,所以制造成本比硅更高。

二、宽带隙半导体的优势,在路线图委员会的专家们看来,碳化硅和氮化镓材料的应用范围越来越广泛,在为行业提供硅无法实现的性能的同时,其价格也更加便宜。据了解,采用碳化硅和氮化硅功率转换器研发的新一代宽带隙半导体,其转换速度比用硅材料研发的同类器件快100至1000倍。

与此同时,宽带隙比硅还能节省更多能效。“一个典型的硅转换器,使用者可以获得约95%的能效,但使用宽带隙转换器,这一数值将接近99%。”Braham Ferreira说到。从应用方面看,采用宽带隙材料制成的小型转换器,通过其低功耗等特性,未来将广泛地应用于脑、笔记本电脑、电视和电动汽车等电源供应市场。

三、路线图重点关注四大领域,“该路线图从战略角度审视了宽带隙的长期前景、未来、趋势,以及潜在的可能性。”针对路线图,ITRW指导委员会主席、IEEE研究员Braham Ferreira谈到,其目的是加速宽带隙技术的研发,以更好发挥这项新技术的潜力。

据了解,路线图委员会由世界各地的材料学专家、工程师、设备专家、政策制定者,以及工业和学术界等领域代表组成。他们重点关注四个领域,分别为基板和设备、模块和封装、GaN系统和应用、SiC系统和应用。针对路线图的制定,Braham Ferreira表示,由于他们不能直接对半导体设备的生产和开发下达行业指令,因此只能通过共识和协议来确定潜在的新应用领域,并为行业的长期研发和投资指明了方向。

路线图摘要列出了采用WBG技术最有可能受益的市场,包括光伏转换器、混合动力和纯电动汽车传动系统以及数据中心。从时间角度看,路线图制定了5年短期、5至15年中期和长期三个阶段的商业化框架。其中,短期主要提出了现有产品和设备的指标、中期则依据具体技术的商业花路径、长期趋势则突出了其他新领域的研究方向。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    334

    文章

    27380

    浏览量

    218948
  • 氮化镓
    +关注

    关注

    59

    文章

    1632

    浏览量

    116360
收藏 人收藏

    评论

    相关推荐

    第三代宽禁带半导体:碳化硅氮化介绍

      第三代宽禁带功率半导体在高温、高频、高耐压等方面的优势,且它们在电力电子系统和电动汽车等领域中有着重要应用。本文对其进行简单介绍。 以碳化硅(SiC)和氮化(GaN)为代表的宽禁
    的头像 发表于 12-05 09:37 331次阅读
    第三代宽禁带<b class='flag-5'>半导体</b>:<b class='flag-5'>碳化硅</b>和<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>介绍

    碳化硅半导体产业中的发展

    碳化硅(SiC)在半导体产业中的发展呈现出蓬勃的态势,其独特的物理和化学性质使其成为新一代高性能半导体材料的佼佼者。以下是对
    的头像 发表于 11-29 09:30 362次阅读

    碳化硅 (SiC) 与氮化 (GaN)应用 | 氮化硼高导热绝缘片

    SiC和GaN被称为“宽带隙半导体”(WBG)。由于使用的生产工艺,WBG设备显示出以下优点:1.宽带隙半导体氮化(GaN)和碳化硅(Si
    的头像 发表于 09-16 08:02 692次阅读
    <b class='flag-5'>碳化硅</b> (SiC) 与<b class='flag-5'>氮化</b><b class='flag-5'>镓</b> (GaN)应用  | <b class='flag-5'>氮化</b>硼高导热绝缘片

    氮化碳化硅哪个有优势

    氮化(GaN)和碳化硅(SiC)都是当前半导体材料领域的佼佼者,它们各自具有独特的优势,应用领域也有所不同。以下是对两者优势的比较:
    的头像 发表于 09-02 11:26 1674次阅读

    碳化硅氮化哪种材料更好

    。随着科技的不断发展,对高性能半导体材料的需求越来越大,碳化硅氮化的研究和应用也日益受到重视
    的头像 发表于 09-02 11:19 1079次阅读

    万年芯:“国家队”出手!各国角逐碳化硅/氮化三代半产业

    碳化硅氮化为代表的第三代半导体材料被认为是当今电子电力产业发展的重要推动力,已在新能源汽车
    的头像 发表于 08-10 10:07 442次阅读
    万年芯:“国家队”出手!各国角逐<b class='flag-5'>碳化硅</b>/<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>三代半产业

    CNBC对话纳微CEO,探讨下一代氮化碳化硅发展

    近日,纳微半导体CEO Gene Sheridan做客CNBC,与WORLDWIDE EXCHANGE主持人Frank Holland对话,分享了在AI数据中心所需电源功率呈指数级增长的需求下,下一代氮化
    的头像 发表于 06-13 10:30 555次阅读

    纳微半导体发布第三代快速碳化硅MOSFETs

    纳微半导体作为GaNFast™氮化和GeneSiC™碳化硅功率半导体的行业领军者,近日正式推出了其最新研发的第三代快速(G3F)
    的头像 发表于 06-11 16:24 978次阅读

    纳微半导体将亮相PCIM 2024,展示氮化碳化硅技术

    在电力电子领域,纳微半导体凭借其卓越的GaNFast™氮化和GeneSiC™碳化硅功率半导体技术
    的头像 发表于 05-30 14:43 617次阅读

    碳化硅氮化的未来将怎样共存

    在这个电子产品更新换代速度惊人的时代,半导体市场的前景无疑是光明的。新型功率半导体材料,比如碳化硅(SiC)和氮化
    的头像 发表于 04-07 11:37 820次阅读
    <b class='flag-5'>碳化硅</b>与<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>的未来将怎样共存

    纳微半导体发布最新AI数据中心电源技术路线图

    纳微半导体,作为功率半导体领域的佼佼者,以及氮化碳化硅功率芯片的行业领头羊,近日公布了其针对AI人工智能数据中心的最新电源
    的头像 发表于 03-16 09:39 942次阅读

    纳微半导体发布了最新的AI人工智能数据中心电源技术路线图

    纳微氮化碳化硅技术并进,下一代AI数据中心电源功率突破飞升
    的头像 发表于 03-13 14:03 834次阅读

    纳微半导体发布最新AI数据中心电源技术路线图

    纳微氮化碳化硅技术并进,下一代AI数据中心电源功率突破飞升 加利福尼亚州托伦斯2024年3月11日讯 — 唯一全面专注的下一代功率半导体
    发表于 03-13 13:48 584次阅读
    纳微<b class='flag-5'>半导体</b><b class='flag-5'>发布</b>最新AI数据中心电源<b class='flag-5'>技术</b><b class='flag-5'>路线图</b>

    半导体碳化硅(SiC)行业研究

    第三代半导体性能优越,应用场景更广。半导体材料作为电子信息技术发展的 基础,经历了数代的更迭。随着应用场景提出更高的要求,以碳化硅
    的头像 发表于 01-16 10:48 1018次阅读
    <b class='flag-5'>半导体</b><b class='flag-5'>碳化硅</b>(SiC)行业研究

    氮化发展难题及技术突破盘点

    同为第三代半导体材料氮化时常被人用来与碳化硅作比较,虽然没有碳化硅
    的头像 发表于 01-10 09:53 2012次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>的<b class='flag-5'>发展</b>难题及<b class='flag-5'>技术</b>突破盘点