0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习与机器学习的区别是什么

h1654155282.3538 来源:51CTO观察 作者:51CTO观察 2021-02-02 10:56 次阅读

随着人工智能浪潮席卷现代社会,不少人对于机器学习深度学习计算机视觉、自然语言处理等名词已经耳熟能详。可以预见的是,在未来的几年里,无论是在业界还是学界,拥有深度学习和机器学习能力的企业都将扮演重要角色。

假设你对人工智能领域的基础知识比较感兴趣,你就会发现很多人工智能技术中常见的两个概念:机器学习和深度学习。如何理解两者间的区别非常重要,本文将对此做简要的解析。

深度学习:一种实现机器学习的技术

所谓深度学习,简单来说是机器学习的一个子集,用于建立、模拟人脑进行数据处理和分析学习的神经网络,因此也可以被称作是深度神经网络。其基本特点是模仿大脑的神经元之间传递和处理信息的模式。

深度学习的优势在于:

不需要手动设计特征,其自动学习的功能对于当前的任务来说最佳;

任务自动获得对抗数据自然变化的鲁棒性;

很强的泛化性,相同的深度学习方法可以用于不同的应用程序和不同的数据类型;

使用多GPU可以执行巨大的并行计算。当数据量很大时,会产生更好的输出结果;

其体系结构有可扩展性,具备适应新问题的潜能。

机器学习:一种实现人工智能的方法

所谓机器学习,通俗来说是一种实现人工智能的方法,它赋予系统从经验中自动学习和发展的能力。与传统的为解决特定任务、硬编码的软件程序不同,研究人员会用大量的数据和各种算法来“训练”机器,让机器学习如何执行并完成任务。

机器学习的优势在于:

解决垃圾邮件检测的问题;

在制造领域优化设备功能,改善生产效率;

简化营销手段,协助预测销售量;

提升预测性维护功能;

提高安全性和网络性能

未来的可能性

许多企业利用机器学习和深度学习从大量数据中获取洞见,实现智能自动化、商业智能、优化运营,达成最小化问题和最大化利润。通常来说,深度学习从大量的非结构化数据(文本、视频、图像、传感器数据)中获取知识,用于解决更复杂的任务。它驱动了计算机视觉、语音解读、自然语言处理等领域机器学习方法的发展。如果您的组织正持续不断地生成海量数据流,那么使用深度学习就非常值得考虑。

迄今而至,深度学习和机器学习都已经发展了一段时间。为了创造更多的收入,不少行业开始采用深度学习和机器学习算法,同时培训员工学习这种能力,为企业做出贡献。很多公司正在推出创新的深度学习技术,以解决复杂的挑战。未来,人工智能的边界仍将随着人类想象力和技术的延展迎来更多的可能。
责任编辑人:CC

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8414

    浏览量

    132607
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121142
收藏 人收藏

    评论

    相关推荐

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习
    的头像 发表于 11-15 09:19 450次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度
    的头像 发表于 10-27 11:13 391次阅读

    人工智能、机器学习深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2484次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么<b class='flag-5'>区别</b>

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 702次阅读

    预训练和迁移学习区别和联系

    预训练和迁移学习深度学习机器学习领域中的两个重要概念,它们在提高模型性能、减少训练时间和降低对数据量的需求方面发挥着关键作用。本文将从定
    的头像 发表于 07-11 10:12 1037次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 909次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,
    的头像 发表于 07-09 10:50 707次阅读

    深度学习在视觉检测中的应用

    能力,还使得机器能够模仿人类的某些智能行为,如识别文字、图像和声音等。深度学习的引入,极大地推动了人工智能技术的发展,特别是在图像识别、自然语言处理、语音识别等领域取得了显著成果。
    的头像 发表于 07-08 10:27 723次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的
    的头像 发表于 07-05 09:47 922次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 878次阅读

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1280次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于
    的头像 发表于 07-01 11:40 1353次阅读

    深度学习与度量学习融合的综述

    如今,机器学习的应用广泛,包括人脸识别、医疗诊断等,为复杂问题和大量数据提供解决方案。机器学习算法能基于数据产生成功的分类模型,但每个数据都有其问题,需定义
    发表于 04-24 09:49 422次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>与度量<b class='flag-5'>学习</b>融合的综述

    为什么深度学习的效果更好?

    导读深度学习机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 623次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    什么是深度学习机器学习深度学习的主要差异

    2016年AlphaGo 击败韩国围棋冠军李世石,在媒体报道中,曾多次提及“深度学习”这个概念。
    的头像 发表于 01-15 10:31 1068次阅读
    什么是<b class='flag-5'>深度</b><b class='flag-5'>学习</b>?<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的主要差异