针对说话人识别系统中存在的有效语音特征提取以及噪声影V向的问题,提出了一种新的语音特征提取方法——基于S变换的美尔倒谱系数( SMFCC)。该方法是在传统美尔倒谱系数(MFCC)的基础上利用S变换的二维时频多分辨率特性,以及奇异值分解(SVD)方法的二维时频矩阵有效去噪性,并结合相关统计分析方法最终获得语音特征。采用TIMIT语音数据库,将所提的特征和现有特征进行对比实验。SMFCC特征的等错误率(EER)和最小检测代价( MinDCF)均小于线性预测倒谱系数(LPCC)、MFCC及其结合方法LMFCC,比MFCC的EER和MinDCF08分别下降了3.6%与17. 9%。实验结果表明所提方法能够有效去除语音信号中的噪声,提升局部分辨率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !