针对人脸视频中眼睛定位精度影响眼睛状态识别正确率问题,提出了一种融合在线肤色模型的眼睛状态识别算法。首先,在人脸主动表观模型( AAM)定位的基础上,使用当前用户的肤色特征,建立在线肤色模型;其次,在初步定位的眼睛区域,再次使用在线肤色模型,定位内外眼角点的精确位置,并利用眼角点的位置信息提取精确的眼睛区域;最后,提取眼睛区域的局部二值特征( LBP),使用支持向量机(SVM)算法,实现对眼睛睁闭状态的鲁棒识别。实验结果表明,对比全局定位的眼角点定位算法,该算法可以进一步降低眼角点的对齐误差,在低分辨人脸中使用在线融合特征的睁闭眼状态的准确识别率分别为95. 03%及95. 47%,分别比直接使用Haar特征和Cabor特征的识别率提升2. 9%和4.8%,在实时人脸视频中,使用在线特征可以明显提高眼睛状态识别效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !