随着“婴儿潮”一代的老龄化并且通常需要更多的医疗护理,该行业正变得越来越依赖于治疗患者的替代措施。
这一点 - 以及对健身和健康的兴趣日益增加 - 需要更实惠,便携的选择。
通过使用便携式设备,可以对患者进行监控和治疗,而不必经常访问医院和诊所。
实例包括助听器,作为减重管理程序的一部分使用的活动监视器,用于需要持续治疗的人的药物监视器,以及用作疼痛管理治疗的一部分的透皮药物分配补丁。
为了满足对小型,可穿戴和电池供电设备不断增长的需求,安森美半导体最近推出了新产品概念Struix™。
Struix在拉丁语中意为“堆叠”,它将定制ASIC和专用标准产品(ASSP)微控制器结合在一个微型,高性能片上系统(SoC)解决方案中。
该概念为医疗设备制造商提供了两全其美的优势:能够通过定制芯片满足特定的,专有的传感器接口需求,同时通过使用行业标准产品降低设计风险和相关成本。
如此处所示,上部芯片是专有传感器接口的示例,下部芯片是基于行业标准的基于ARM®Cortex®-M3控制器的微处理器(ULPMC10)。
ULPMC10微控制器专为低功耗和芯片堆叠而设计。
在此示例中,两个组件堆叠在6x6mm QFN封装中,但也提供其他封装选项。
基于Struix的产品始于专有传感器接口的开发。
开发过程利用我们在低功耗,低噪声信号调理,放大和转换中的知识产权(IP)。
可用的关键IP模块的一些示例包括每转换电平低于2.4pJ的24位转换器和仅以几十微安运行的低噪声差分放大器。
专有的传感器接口开发流程通常源于客户专有的传感器接口规范,然后是设计,实施,测试和认证阶段。
与这些阶段并行,客户的应用程序开发团队能够在ULPMC10微控制器上开发必要的最终应用程序代码。
我们的开发板适用于独立操作以及一旦可用的专有传感器接口原型,使客户能够在完全生产之前评估最终应用的性能。
大多数医疗设备以占空比的方式操作(例如,设备在睡眠模式下比在活动模式下花费更多时间)。
ULPMC10微控制器通过提供200nA的极低睡眠模式电流以及始终运行的实时时钟威廉希尔官方网站
来实现此类操作。
完全加载ARM Cortex-M3处理器并直接从片上闪存执行应用程序代码时,活动模式的功耗低于200uA / MHz。
这允许延长电池寿命,与较小电池的使用相结合,导致更小,更有吸引力的医疗设备。
Struix方法通常可以减少设计时间,开发风险以及与完全定制的解决方案相关的成本。
设计灵活性得到进一步增强,因为ULPMC10微控制器可以使用安森美半导体未来的微控制器轻松更新,而无需更换受到FDA重新认证的AFE。
有关Struix的更多信息,请访问http://www.onsemi.com/medical。
以上来自于谷歌翻译
以下为原文
As the “baby boomer” generation ages and generally requires more medical care, the industry is becoming more reliant on alternative measures to treat patients. This - along with an increased interest in fitness and wellness - has necessitated more affordable, portable options. By using portable devices patients can be monitored and treated without the inconvenience of having to frequently visit hospitals and clinics. Examples include hearing aids, activity monitors used as part of a weight reduction management program, medicinal monitors for people requiring ongoing treatment, and transdermal drug distribution patches used as part of pain management therapy.
To meet the growing demand for small, wearable and battery powered devices, ON Semiconductor recently launched Struix™, a new product concept. Meaning “stacked” in Latin, Struix combines a custom ASIC and an application specific standard product (ASSP) microcontroller together in a miniature, high-performance system-on-chip (SoC) solution. The concept offers medical device manufacturers the best of both worlds: the ability to address specific, proprietary sensor-interface needs with a custom chip, while typically lowering design risks and associated costs by using an industry-standard product.
As shown here, the upper chip is an example of a proprietary sensor interface and the lower chip is an industry-standard ARM® Cortex®- M3 controller-based microprocessor (ULPMC10). The ULPMC10 microcontroller is designed specifically with low power and chip stacking in mind. In this example, the two components are stacked in a 6x6mm QFN package, but other packaging options are available.
A Struix-based product begins with the development of a proprietary sensor interface. The development process takes advantage of our intellectual property (IP) within low-power, low-noise signal conditioning, amplification, and conversion. Some examples of available key IP blocks include 24-bit converters operating at less than 2.4pJ per conversion level and low-noise, differential amplifiers operating at only tens of micro amperes.
A proprietary sensor-interface development flow typically originates in the customer’s proprietary sensor interface specification, and is followed by design, implementation, test, and qualification phases. In parallel with these phases, the customer’s application development team is able to develop the necessary end-application code on the ULPMC10 microcontroller. Our development board, which is suitable for standalone operation as well as with a prototype of the proprietary sensor interface once available, enables the customer to evaluate the performance of the end-application prior to full production.
Most medical devices operate in a duty-cycled manner (eg. The devices spend more time in sleep mode than in active mode). The ULPMC10 microcontroller targets such operation by offering a very low sleep mode current of 200nA with real-time clock circuitry always running. Active modes consume less than 200uA/MHz when fully loading the ARM Cortex-M3 processor and executing application code directly out of on-chip flash memory. This allows for extended battery life, which, combined with the usage of smaller batteries, leads to a smaller, more attractive medical device.
The Struix approach typically reduces design time, development risks and the costs associated with fully customized solutions. Design flexibility is further enhanced because the ULPMC10 microcontroller can easily be updated with future microcontrollers from ON Semiconductor, without replacing the AFE, which is subject to FDA recertification. More information about Struix can be found at http://www.onsemi.com/medical.
|