继续玩飞腾派。。。
接着上一篇【飞腾派4G版免费试用】飞腾派SeetafaceEngine人脸检测 继续补充。
FaceAlignment人脸对齐是标出面部眼、鼻、嘴等,需要用到FaceDetection和FaceAlignment的so库函数。
1、飞腾派Ubuntu系统下编译FaceDetection人脸检测库
$cd XXX/SeetaFaceEngine-master/FaceDetection
$ mkdir build
$ cd build
$ cmake -D CUDA_USE_STATIC_CUDA_RUNTIME=OFF ..
$ make -j4
编码报错 error: unrecognized command-line
option ‘-msse4.1’,打开CMakeLists.txt删除USE_SSE相关定义即可。
编译成功后,得到人脸检测demofacedet_test,人脸检测用户态库libseeta_facedet_lib.so和face_detection.h头文件。
2、飞腾派Ubuntu系统下编译FaceAlignment人脸对齐库
$cd /SeetaFaceEngine-master/FaceAlignment
$ mkdir build
$ cd build
//拷贝face_detection.h到FaceAlignment/include/目录下
//拷贝libseeta_facedet_lib.so到FaceAlignment/build/目录下
$ cmake ..
$ make -j4
编译报错处理:
(1)打开CMakeLists.txt删除USE_SSE定义
(2)修改face_alignment_test.cpp,改成适配opencv v4以上版本库函数,在源文件添加定义“using std::isnan;”。
编译成功后,得到人脸对齐demofa_test,人脸对齐用户态库libseeta_fa_lib.so和face_alignment.h头文件。
3、在IDE环境编译UVC摄像头人脸对齐演示demo
这里创建OpenCV project工程OpenCV_UVC,添加common.h、face_detection.h、libseeta_facedet_lib.so、face_alignment.h、libseeta_fa_lib.so文件到OpenCV project,然后编写源码如下:
#include <cstdint>
#include <fstream>
#include <iostream>
#include <string>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "face_detection.h"
#include "face_alignment.h"
using namespace std;
using namespace cv;
int seeta_fa_main(int argc, char** argv)
{
bool result_cam = 0;
printf("face alignment\n");
seeta::FaceDetection detector(“../../seetaface/seeta_fd_frontal_v1.0.bin”);
detector.SetMinFaceSize(40);
detector.SetScoreThresh(2.f);
detector.SetImagePyramidScaleFactor(0.8f);
detector.SetWindowStep(4, 4);
seeta::FaceAlignment point_detector(“../../seetaface/seeta_fa_v1.1.bin”);
cv::VideoCapture capture;
result_cam = capture.open(“/dev/video0”, cv::CAP_V4L2);
if(result_cam < 1) {
printf("open camera fail: %d\n", result_cam);
return -1;
}
capture.set(cv::CAP_PROP_FOURCC, cv::VideoWriter::fourcc('M', 'J', 'P', 'G'));
capture.set(cv::CAP_PROP_FRAME_WIDTH, 640);
capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
capture.set(cv::CAP_PROP_FPS, 30);
cv::Mat img;
cv::Mat img_gray;
while(1)
{
capture >> img;
if (img.empty()) continue;
cvtColor(img, img_gray, COLOR_BGR2GRAY);
int pts_num = 5;
int im_width = img_gray.cols;
int im_height = img_gray.rows;
unsigned char* data = new unsigned char[im_width * im_height];
unsigned char* data_ptr = data;
unsigned char* image_data_ptr = (unsigned char*)img_gray.data;
int h = 0;
for (h = 0; h < im_height; h++) {
memcpy(data_ptr, image_data_ptr, im_width);
data_ptr += im_width;
image_data_ptr += img_gray.step;
}
seeta::ImageData image_data;
image_data.data = data;
image_data.width = im_width;
image_data.height = im_height;
image_data.num_channels = 1;
std::vector<seeta::FaceInfo> faces = detector.Detect(image_data);
int32_t face_num = static_cast<int32_t>(faces.size());
if (face_num > 0)
{
face_num = (face_num>16)?16:face_num;
seeta::FacialLandmark points[16];
for(int id=0; id<face_num; id++) {
point_detector.PointDetectLandmarks(image_data, faces[id], points);
cv::Rect face_rect;
face_rect.x = faces[id].bbox.x;
face_rect.y = faces[id].bbox.y;
face_rect.width = faces[id].bbox.width;
face_rect.height = faces[id].bbox.height;
cv::rectangle(img, face_rect, CV_RGB(0, 0, 255), 1, 8, 0);
cv::Point pt;
for (int i = 0; i<pts_num; i++) {
pt.x = points[i].x;
pt.y = points[i].y;
cv::circle(img, pt, 2, CV_RGB(0, 255, 0), CV_FILLED);
}
}
}
cv::namedWindow("faceAlignment", cv::WINDOW_AUTOSIZE);
cv::imshow(“faceAlignment”, img);
delete[]data;
if (cv::waitKey(1) == 27)
break;
}
cv::destroyAllWindows();
return 0;
}
4、demo演示
编译OpenCV project,得到可运行程序OpenCV_UVC,运行人脸对齐测试程序、根据PID号绑定大核运行。
$ ./OpenCV_UVC
$ top //获取PID(例如5523)…
$ taskset -cp 2 5523
粗略估算多个人脸图像的对齐速度在5~6 幅/秒。。。