完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
|
|
相关推荐
1个回答
|
|
一:线、相、极性
“相” 就是说明步进电机有几个线圈(也叫做绕组)。 “线” 就是说明步进电机有几个接线口。 “极性” 分为 单极性 和 双极性。如果步进电机的线圈是可以双向导电的,那么这个步进电机就是双极性的,相反,如果步进电机的线圈是只允许单向导电的,那么这个步进电机就是单极性的。 上面的三个只要知道其中两个,就可以推断出第三个。 如:五线四相步进电机 就是有5个接线口,4个线圈。由于有五个接线头,即接线头的个数是奇数个,也就是说有一个接线头是公共接头,所以它的线圈的导电方式就只允许是单向的 ,即这个步进电机是单极性的。如下图: 四线双极性步进电机就是有4个接线口,导电方式是允许双向的。 由于有四个接线口,且导电方式是双向的,所以这个步进电机是两相的。 二、步进电机的步进方式:单拍、双拍、单双拍 1、单拍:(单四拍工作方式) 单拍工作方式就是说每次只给一个线圈通电,通过改变每次通电的线圈从而使步进电机转动。 先说五线四相步进电机,假设它的四个线圈叫做 A、B、C、D,那么在单拍工作方式下,线圈的通电方式依次是:A、B、C、D; 然后是四线双极性步进电机,假设它的两个线圈叫做 A、B,那么在单拍工作模式下,线圈依次是:A、B、-A、-B; 【注】A、B指的是A、B线圈通正向电流,-A、-B指的是A、B线圈通反向电流。由于五线四相步进电机无法通反向电流,所以只有A、B、C、D。 当然上面说的都仅仅只是理论,我们记忆的话自然有简便方法: 下面是五线四相步进电机: 下面是四线双极性步进电机: 2、双拍:(双四拍工作方式) 双拍工作方式就是:每次给两个线圈通电,通过改变通电的线圈从而使步进电机转动。 五线四相步进电机:在双拍工作方式下,线圈的通电方式依次是:AB、BC、CD、DA; 四线双极性步进电机,在双拍工作模式下,线圈的通电方式依次是:AB、B-A、-A-B、-BA; 大家很容易找出规律吧。 3、单双拍(八拍工作方式) 单双拍工作方式就是单拍工作方式和双拍工作方式交替进行。 五线四相步进电机:A、AB、B、BC、C、CD、D、DA; 四线双极性步进电机:A、AB、B、B-A、-A、-A-B、-B、-BA; 大家只要对照上面我画的那张图,就可以会很容易的记住了。 最后再说一下步距角: 本文为网上转载,如有冒犯,请联系我 双极性步进电机的基础知识 双极性步进电机包含两绕组,为了使电机运行平稳,不断的给这两个线圈加以相位差90度的正弦波,步进电机就开始转动起来。 通常,步进电机不是由模拟线性放大器驱动;而是由PWM电流调节驱动,把线性的正弦波信号转换成了离散的直线段信号。 正弦波可被分成多段,随着段数的增加,波形不断接近正弦波。 实际应用中,段数多从4到2048或更多,大多数步进驱动IC采用4到64段细分。整步驱动,每一时刻只有一个相通电,两相电流交替和电流方向切换,使得一共产生四个步进电机机械状态。半步驱动,比整步驱动方式相对复杂一些,在同一时刻,可能两个相都需要被通电,如图1所示,使电机的步进分辨率提高了一倍。细分驱动,电机转子走一步的角度将会随着细分数的增加而减小,电机转动也越来越平稳,例如把一个32段细分序列称为八分之一步驱动模式(见图1)。 图1:细分驱动的电流波形。 电流控制精度的重要性 双极性步进电机转子的位置取决于流经两个线圈绕组的电流的大小。通常,选择步进电机的主要指标为,准确的机械定位或精准的机械系统速度控制。所以绕组电流的精度控制对步进电机的平稳运行非常重要。 在机械系统中,有两个问题会导致不准确的电流控制: ?在低速运行或用步进电机用于定位控制的情况下,每一细分段电机运行的步数错误,导致错误的定位。 ?在高速运行下,系统非线性会导致短期电机运行速度变化,使得力矩不稳,增加了电机噪声和振动。 PWM控制和电流衰减模式(Decay Mode) 大多数的步进电机驱动IC,依靠步进电机绕组的电感特性实现PWM电流调节。通过每个绕组对应的功率MOSFET组成的H桥威廉希尔官方网站 ,随着PWM控制开始,电源电压被加到电机绕组上,从而产生驱动电流。一旦电流达到设定值,H桥就会切换控制状态,使得输出电流衰减。 一定固定时间后,一个新的PWM周期又会开始,H桥再次产生线圈电流。 重复这一过程,使绕组电流上升和下降。通过电流采样和状态控制,可以调节控制每一段细分的峰值电流值。 在预期的峰值电流达到后,H桥驱动绕组的电流衰减控制方式有两种: ?绕组短路(同时开通低侧或高侧的MOSFET),电流衰减慢。 ?H桥反向导通,或允许电流通过MOSFET的体二极管流通,电流衰减快。 这两种电流衰减方式称为慢衰减和快衰减(见图2)。 转存失败重新上传取消 图2:H桥工作状态。 由于电机绕组是感性的,电流的变化率取决于施加的电压和线圈感值。要步进电机快速运行,理想的情况就是是能够控制驱动电流在很短的时间内变化。不幸的是,电机运动中会产生一个电压,其方向与外加电压相反,反抗电流发生改变的趋势,称为“反电动势”。 所以电机转速越快,此反向电动势就越大,在它作用下电机随速度的增大而相电流减小,从而导致力矩变小。 为了减轻这些问题,要么提高驱动电压,要么降低电机绕组电感。 降低电感意味着用更少的匝数绕组,就需要更高的电流来达到相同的磁场强度和扭矩。 传统峰值电流控制的问题 传统的步进电机峰值电流控制,通常只检测通过线圈的峰值电流。 当预期的峰值电流达到后,H桥就会切换导通状态,使得输出电流衰减(快衰减,慢衰减,或两者的组合),持续一定固定时间,或等一个PWM周期结束。电流衰减时,驱动IC无法检测输出电流,从而导致一些问题。 一般来说,最好是用慢衰减,可以得到更小的电流纹波,平均电流能更准确的跟踪峰值电流。 然而,随着步率增大,慢衰减不能够及时降低绕组电流,无法保证精确的电流调节。 为了防止采样到开关电流尖峰,在每个PWM周期的开始,有一个非常短的时间(blanking time)是不采样绕组电流的,那么此时的电流就是不受控制的。这会导致严重的电流波形畸变和电机运行的不稳定(见图3)。 图3:慢衰减模式下的电流畸变。 在正弦波达到峰值后,电流先开始衰减,然后又增加,直到H桥工作在高阻状态,电流才继续向零衰减。 为了避免这种情况,许多步进电机驱动芯片,在电流幅值增加的时候采用慢衰减模式,在电流幅值减小时使用快衰减或混合衰减(结合快衰减和慢衰减)模式。 然而,这两种衰减模式的平均电流是是完全不同的,因为快衰减模式时的电流纹波相对大很多。 结果就是,两种模式下的平均电流值相差很大,导致电机运行不平稳(见图4)。 图4:传统峰值电流控制下的波形 如图4波形所示,峰值电流后一步和前一步的电机步进不一样,会导致位置误差和瞬时速度的变化。电流过零时,因为两种衰减模式的切换,也会有同样的问题。 双向电流采样 传统的步进驱动,在每个H桥下管源极和地之间接外部检测电阻,只测量PWM导通时检测电阻上的正向电压。在慢衰减模式下,电流循环通过内部MOSFET,不通过检测电阻,因此无法测量电流。在快衰减模式下,通过电阻的电流翻转,产生的是负电压。对于目前的电源IC工艺,负电压很难被简单的采样处理。 如果我们可以监控电流衰减时期的绕组电流,许多步进电机驱动的电流调节问题就能被解决。但是,如上所说通过外部检测电阻很难实现,更好的选择是尝试内部电流检测。内部电流检测允许在任何时候监测电流,如PWM导通时间,以及快衰减和慢衰减过程中。 虽然它增加了驱动IC的复杂性,但内部电流检测大大降低了系统成本,因为外部的采样电阻不需要了。 这些电阻非常大且昂贵,价格通常和驱动IC差不多! MP6500步进驱动IC MP6500双极性步进电机驱动芯片,集成内部电流检测,很好的取代了传统廉价的峰值电流控制双极步进电机的驱动IC。MP6500内部威廉希尔官方网站 框图如图5所示。 图5:MP6500威廉希尔官方网站 框图。 MP6500最大驱动电流峰值为2.5A(具体取决于封装和PCB设计);电源电压范围从4.5V至35V。 支持整步,半步,四分之一步,八分之一步驱动模式。不需要外部电流检测电阻,只需要一个接地的小型、低功耗电阻去设定绕组电流峰值。 内部电流检测依赖于精准的功率管及相关威廉希尔官方网站 的匹配设计,可以保证始终准确采样绕组电流,从而提高步进电机的运行质量。 通常情况下, MP6500工作在慢衰减模式下。然而,当一个固定关断时间结束,慢衰减结束后,如果当前绕组电流仍高于预期水平,快衰减模式会被开启以用来迅速减小驱动电流到所需值。 这种混合控制模式,使得驱动电流快速下降到零,同时又保证平均电流尽量接近设定值。 当step跳变时,快衰减就被采用使得当前电流迅速被调整到零,如图6所示。 图6:MP6500的自动衰减模式(step跳变时)。 如果电源电压高,电感值低,或所需的峰值电流幅值很低,电流很有可能高于设定值。由于blanking time,每个PWM周期都会有一个最小导通时间,此时许多传统的步进电机驱动器无法控制绕组电流。如果发生这种情况,MP6500会不断采用快衰退模式来保证绕组电流一直不超过设定值(见图7)。 图7: MP6500的自动衰减模式(低电流情况下)。 步进电机的基本操作模式称为“励磁模式”,能够使步进电机工作在全步模式、半步模式和微步模式,其中微步模式能够有效的降低步进电机相电流的噪声,能够改善步进电机固有的噪声震动问题。下面将介绍3种励磁模式。 全步模式 所谓全步模式,就是依据电机固有结构设计固定的步距角工作,一个电脉冲,步进电机前进一个步距角。这个步距角使电机设计结构所决定的,也可以理解为电机以最大的步距角旋转。 半步模式 半步模式是以电机固有的结构决定的步距角的一半角度进行步进旋转。如下图所示,步进电机的总极数是4级,对应的步距角是90度,那么半步模式下,步进电机每个脉冲旋转45度。 微步模式 微步模式类似于半步模式,步距角更小,就是1/4步、1/8步、1/16步,可以到很高的细分。对应的步进角度就是在整步步距角乘以微步系数。 步进电机的步距角越小,需要的加工精度会越高,对应的微步时的步进角度的误差会越大。 电机控制驱动器 步进电机不能直接接到工频交流或直流电源上工作,而必须使用专用的步进电机驱动器,它有脉冲发生控制单元、功率驱动单元、保护单元等组成。如下图所示。 驱动单元与步进电机直接耦合,也可以理解成步进电机微机控制器的功率接口。下面将使用MCU和分离元器件的系统举例说明。MCU相当于是控制电机的大脑,它向分立器件发送电机的步距角时间、转动方向和重复次数等,而分立器件根据MCU发出的信号,将放大电压和电流并将其发送至电机,从而驱动电机转动。 如上图所示,该系统使用了MCU和电机控制驱动器IC。从输入控制信号来区分,步进电机控制器IC可以分为相入力型和时钟入力型。相入力型是指电机的每个励磁相的电流方向由输入信号控制,而时钟入力型是指电机的驱动由脉冲信号来控制。 相入力型 相入力型电机驱动器需要A和B两相的控制信号,只需要时钟信号,需要控制信号的MCU做更多的运输工作。 时钟入力型 时钟入力型电机驱动器的控制接口,需要时钟信号(单脉冲信号)输入,其控制信号相对简单,MCU的资源占用较少。 电机驱动安全技术 上电复位功能(POR) 上电复位功能将监控电机驱动器,以及电机驱动控制器的电源。为防止电机操作故障,它将强制关闭输出信号直至供电电压保持稳定。如下图所示。 过电流检测功能(ISD) 过电流关断功能将监控输出单元的电流,如果电流超过规定值,将强制关闭输出,该功能的用途在于当发生短路时暂时停止IC输出。如下图所示。 热关断功能(TSD) 热关断功能在于,当电机控制驱动器芯片温度超过规定值时关闭输出,并保持该状态直至温度下降。 |
|
|
|
只有小组成员才能发言,加入小组>>
2443 浏览 0 评论
9135 浏览 4 评论
36820 浏览 19 评论
5036 浏览 0 评论
24798 浏览 34 评论
1545浏览 2评论
1766浏览 1评论
2213浏览 1评论
1571浏览 0评论
543浏览 0评论
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-26 21:13 , Processed in 1.130059 second(s), Total 48, Slave 42 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (威廉希尔官方网站 图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号